АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ#
§🔍YouTube канал Занимательные задачи

zadach.net YouTube канал Занимательные задачи

задача на вероятность, геометрическая задача

Задача о сломанной палке.

Палку случайным образом ломают на три части; какова вероятность того, что из обломков можно составить треугольник? (Точки перелома равномерно распределены по длине палки)

Ответ

1/4

Решение задачи

Действительно, нарисуем равносторонний треугольник и соединим середины его сторон отрезками прямых. У нас получится равносторонний треугольник меньших размеров, расположенный внутри первого (на рисунке меньший треугольник заштрихован). Сумма длин перпендикуляров, опущенных из любой точки большого треугольника на его стороны, не зависит от выбора точки и равна высоте большого треугольника. Если эту точку выбрать внутри меньшего треугольника (на рисунке этому условию удовлетворяет точка А), то любой из трех перпендикуляров будет не больше суммы двух других перпендикуляров. Следовательно, из отрезков, равных по длине трем перпендикулярам, опущенным из любой точки малого треугольника на стороны большого, всегда можно построить треугольник. Если же точка лежит вне малого треугольника (на рисунке - точка В), то один перпендикуляр заведомо длиннее суммы двух других перпендикуляров, и построить из таких перпендикуляров треугольник невозможно. Так как площадь заштрихованого треугольника составляет 1/4 площади всего треугольника, то искомая вероятность равна 1/4. Таким образом, если палку разломать на три части, то из ее обломков можно составить треугольник с вероятностью 1/4 (25%).

О задаче

Скачать задачу

Вы можете скачать изображение с текстом задачи, поделиться им с друзьями в социальных сетях либо использовать в презентациях. Для скачивания, нажмите на картинке.

Скачать задачу

◄ На предыдущую страницу

Оставить комментарий

Свои вопросы, комментарии, замечания и занимательные задачи присылайте через предложенную ниже форму.

Имя: Почта:
Сообщение:

Проверочный код: 2+2×2=   

Решите задачу

По кругу расположены шесть букв. По тому же самому кругу написаны различные слова. Можно идти по ходу часовой стрелки и в обратном направлении, складывая слова из любого количества написанных здесь букв. Но читать их надо обязательно подряд, без пропусков. Сколько слов сумеете прочитать вы?

a) 5
b) 9
c) 8
d) 7

Занимательные задачи

Ещё больше занимательных задач собрано в следующих разделах:

Числовые головоломки
Числовые головоломки
Числовые ребусы
Числовые ребусы
Задачи на дроби
Задачи на дроби
Задачи с процентами
Задачи с процентами
Латинский квадрат
Латинский квадрат
Магический квадрат
Магический квадрат


Учительский портал

Энциклопедия занимательных задачSirotaSOFT © 2021 -