комбинаторная задача, задача с перестановками Задача о прыгуне.![]() Сколькими, способами прыгун, стоящий перед клетками, начерченными на земле, может, достигнуть 10-й клетки, если он прыгает слева направо, приземляясь лишь в начерченных клетках, и длина его прыжков может быть произвольна? Ответ512 Решение задачиОбозначим через us, число способов достижения s-й клетки. Для решения задачи следует учесть, что у прыгуна есть возможность (одна) прыгнуть на n-ю клетку, не приземляясь на промежуточных. Приземляться на k промежуточных клетках он может Ckn-1 способами. Следовательно: un=1+C1n-1+C2n-1+...+Cn-1n-1=2n-1. Таким образом, прыгун может достигнуть 10-й клетки 29=512 способами. О задаче
Скачать задачуВы можете скачать изображение с текстом задачи, поделиться им с друзьями в социальных сетях либо использовать в презентациях. Для скачивания, нажмите на картинке. Оставить комментарийСвои вопросы, комментарии, замечания и занимательные задачи присылайте через предложенную ниже форму. ![]() Решите задачуВ мастерской по пошиву одежды от куска сукна в 200 м. ежедневно, начиная с 1 марта, отрезали 20 м. Когда был отрезан последний кусок? Занимательные задачиЕщё больше занимательных задач собрано в следующих разделах:
|