АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ#
§🔍YouTube канал Занимательные задачи

zadach.net YouTube канал Занимательные задачи

логическая задача, задача на шахматной доске, задача на инвариант

Можно ли клетки шахматной доски покрыть 31 костью домино?

От сделанной из фанеры (или картона) шахматной доски в 64 клетки отрезаны две клетки, находившиеся в противоположных углах. Можно ли все клетки оставшейся части покрыть 31 костью домино, каждая из которых покрывает ровно 2 клетки?

Ответ

Нельзя.

Решение задачи

От шахматной доски отрезаны 2 белые (или черные) клетки, так что черных и белых клеток осталось разное число. Кость домино покрывает одну черную и одну белую клетку. Поэтому заданное покрытие невозможно.

О задаче

Похожие задачи

Список похожих занимательных задач:

Скачать задачу

Вы можете скачать изображение с текстом задачи, поделиться им с друзьями в социальных сетях либо использовать в презентациях. Для скачивания, нажмите на картинке.

Скачать задачу

◄ На предыдущую страницу

Оставить комментарий

Свои вопросы, комментарии, замечания и занимательные задачи присылайте через предложенную ниже форму.

Имя: Почта:
Сообщение:

Проверочный код: 2+2×2=   

Решите задачу

Листочком бумаги частично прикрыта буква. Сколько различных букв здесь может быть скрыто?

a) 4
b) 2
c) 1
d) 3

Занимательные задачи

Ещё больше занимательных задач собрано в следующих разделах:

Правило ложного положения
Правило ложного положения
Решение задачи с конца
Решение задачи с конца
Правило крайнего
Правило (принцип) крайнего
Инвариант
Инвариант
Чётность
Чётность
Старинные задачи
Старинные задачи

Учительский портал

Энциклопедия занимательных задачSirotaSOFT © 2021 -