АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ#
§🔍YouTube канал Занимательные задачи

zadach.net YouTube канал Занимательные задачи

старинная задача

Четверо купцов имеют некоторую сумму денег.

Четверо купцов имеют некоторую сумму денег. Известно, что сложившись без первого, они соберут 90 рублей, сложившись без второго - 85 рублей, сложившись без третьего - 80 рублей, сложившись без четвертого - 75 рублей. Сколько у кого денег?

Ответ

20, 25, 30, 35 рублей у первого, второго, третьего и четвертого соответственно.

Решение задачи

Второй, третий и четвертый купцы, сложив свои деньги вместе, соберут, как сказано в условии, 90 рублей. Если от этой суммы отнять деньги второго купца и добавить деньги первого, то получится по условию 85 рублей. Поэтому у первого купца на 5 рублей меньше, чем у второго. Но точно также легко увидеть, что у третьего купца на 5 рублей больше, чем у второго. Значит, первый, второй и третий купцы, сложив свои деньги вместе, соберут втрое больше денег, чем имеется у второго купца. В условии сказано, что эта сумма составляет 75 рублей, и мы находим, что у второго купца было 25 рублей, у первого - 20 рублей, у третьего - 30 рублей. Тогда у четвертого купца было 35 рублей.

О задаче

Скачать задачу

Вы можете скачать изображение с текстом задачи, поделиться им с друзьями в социальных сетях либо использовать в презентациях. Для скачивания, нажмите на картинке.

Скачать задачу

◄ На предыдущую страницу

Оставить комментарий

Свои вопросы, комментарии, замечания и занимательные задачи присылайте через предложенную ниже форму.

Имя: Почта:
Сообщение:

Проверочный код: 2+2×2=   

Решите задачу

Пять школьников перед началом учебного года пошли в магазин, чтобы купить тетради. Первый из них имел 20 коп., второй 15 коп., третий 5 коп., четвертый 10 коп., а пятый 20 коп. Сколько тетрадей купили школьники на все имевшиеся у них деньги, если первый и второй вместе за их деньги получили в магазине 21 тетрадь?

a) 42 тетради.
b) 20 тетрадей.
c) 21 тетрадь.
d) 40 тетрадей.

Занимательные задачи

Ещё больше занимательных задач собрано в следующих разделах:

Правило ложного положения
Правило ложного положения
Решение задачи с конца
Решение задачи с конца
Правило крайнего
Правило (принцип) крайнего
Инвариант
Инвариант
Чётность
Чётность
Старинные задачи
Старинные задачи

Учительский портал

Энциклопедия занимательных задачSirotaSOFT © 2021 -